forkkmuopengl/BaseGLProject/MyGLWindow.cpp
2019-06-12 17:19:09 +09:00

240 lines
7.8 KiB
C++

#include "MyGlWindow.h"
//Getting the projection matrix
glm::mat4x4 perspective(float fovy, float aspect, float near, float far)
{
float fovy2 = glm::tan(fovy / 2);
glm::mat4x4 pmat{ { 1 / (aspect * fovy2), 0, 0, 0},
{ 0, 1 / fovy2, 0, 0},
{ 0, 0, -((far + near) / (far - near)), -1},
{ 0, 0, -((2 * far * near) / (far - near)), 0} };
return pmat;
}
// Getting the view matrix
glm::mat4x4 lookAt(glm::vec3 campos, glm::vec3 look, glm::vec3 up)
{
glm::vec3 ZCam(glm::normalize(campos - look));
glm::vec3 XCam(glm::normalize(glm::cross(up, ZCam)));
glm::vec3 YCam(glm::normalize(glm::cross(ZCam, XCam)));
glm::mat4x4 cam_mat{ {XCam.x, YCam.x, ZCam.x, 0},
{XCam.y, YCam.y, ZCam.y, 0},
{XCam.z, YCam.z, ZCam.z, 0},
{0, 0, 0 ,1} };
glm::mat4x4 norm_mat{ {1, 0, 0, 0},
{0, 1, 0, 0},
{0, 0, 1, 0},
{-campos.x, -campos.y, -campos.z, 1} };
return cam_mat * norm_mat;
}
MyGlWindow::MyGlWindow(int w, int h) :
viewer(glm::vec3(5, 5, 5), glm::vec3(0, 0, 0), glm::vec3(0, 1, 0), 45.0f, (w / (float)h))
{
m_width = w;
m_height = h;
_scnctx.height = m_height;
_scnctx.width = m_width;
setup();
}
MyGlWindow::~MyGlWindow()
{
shaders.clear();
}
void MyGlWindow::draw()
{
if (_scnctx.renderMode == GBUF_DEBUG)
drawDebugGBuffer();
else if (_scnctx.renderMode == DEFERRED_LIGHT)
drawDeferredLight();
}
void MyGlWindow::setBgColor(float bgColor[3])
{
_scnctx.bg = glm::vec4(bgColor[0], bgColor[1], bgColor[2], 1);
}
void MyGlWindow::textureSetup()
{
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_MIRRORED_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_MIRRORED_REPEAT);
_scnctx.textures.emplace("BrickTex", Texture("brick1.jpg"));
_scnctx.textures.emplace("MossTex", Texture("moss.png"));
_scnctx.textures.emplace("EarthTex", Texture("earth.jpg"));
_scnctx.textures.emplace("OgreTex", Texture("Models/ogre/ogre_diffuse.png"));
_scnctx.textures["OgreTex"].mat.shininess = 3.0f;
_scnctx.textures["OgreTex"].mat.ks = glm::vec3(0.1f, 0.1f, 0.1f);
_scnctx.textures["OgreTex"].mat.ka = glm::vec3(0.3f, 0.3f, 0.3f);
_scnctx.textures["OgreTex"].mat.enabled = true;
_scnctx.textures.emplace("OgreNmap", Texture("Models/ogre/ogre_normalmap.png"));
_scnctx.textures["OgreNmap"].isNmap = true;
_scnctx.textures.emplace("CubeTex", Texture("Models/cube/color_map.jpg"));
_scnctx.textures["CubeTex"].mat.shininess = 3.0f;
_scnctx.textures["CubeTex"].mat.ks = glm::vec3(0.1f, 0.1f, 0.1f);
_scnctx.textures["CubeTex"].mat.ka = glm::vec3(0.3f, 0.3f, 0.3f);
_scnctx.textures["CubeTex"].mat.enabled = true;
_scnctx.textures.emplace("CubeNmap", Texture("Models/cube/normal_map.jpg"));
_scnctx.textures["CubeNmap"].isNmap = true;
}
void MyGlWindow::multipassSetup()
{
_multipassManager.addTexture("position_buffer", GL_NEAREST, GL_RGB16F, GL_RGB, GL_FLOAT, false, _scnctx);
_multipassManager.addTexture("normal_buffer", GL_NEAREST, GL_RGB16F, GL_RGB, GL_UNSIGNED_BYTE, false, _scnctx);
_multipassManager.addTexture("color_buffer", GL_NEAREST, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, false, _scnctx);
//_multipassManager.addTexture("depth_tex", GL_LINEAR, GL_DEPTH_COMPONENT24, GL_DEPTH_COMPONENT, GL_FLOAT, true, _scnctx);
_multipassManager.bindToFrameBuffer(GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, "position_buffer");
_multipassManager.bindToFrameBuffer(GL_COLOR_ATTACHMENT1, GL_TEXTURE_2D, "normal_buffer");
_multipassManager.bindToFrameBuffer(GL_COLOR_ATTACHMENT2, GL_TEXTURE_2D, "color_buffer");
//_multipassManager.bindToFrameBuffer(GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, "depth_tex");
_multipassManager.setDrawBuffers();
}
void MyGlWindow::setup()
{
glEnable(GL_DEPTH_TEST);
glEnable(GL_DEPTH_BUFFER);
glEnable(GL_TEXTURE_2D);
_scnctx.bg = glm::vec4(0.7, 0.7, 0.9, 1);
textureSetup();
multipassSetup();
Dataset moddata;
//Scene for GBuffer Testing
Mesh *mountain = new Mesh("mountain/mount.blend1.obj", "DSGeometryPass.vert", "DSGeometryPass.frag");
meshes.emplace("Nanosuit_A", mountain);
_scnctx.lights.emplace("RandLight",
Light(glm::vec3(1, 1, 1), glm::vec4(0, 2, 0, 1)));
//Scene for light testing
moddata.simpleCube();
//Hardcoded seed for easy scene replication
/*std::srand(18);
int zob = std::rand();
for (int i = 0; i < 64; i++)
{
std::string cube_name = "Cube" + std::to_string(i);
meshes.emplace(cube_name, new Mesh(moddata, "DSGeometryPass.vert", "DSGeometryPass.frag"));
meshes[cube_name]->textures["0"] = _scnctx.textures["BrickTex"];
float pos_x = std::rand() % 100 - 50;
float pos_z = std::rand() % 100 - 50;
meshes[cube_name]->addStartTranslation(glm::vec4(0, 1, 0, 0));
meshes[cube_name]->addStartTranslation(glm::vec4(pos_x, 0, 0, 0));
meshes[cube_name]->addStartTranslation(glm::vec4(0, 0, pos_z, 0));
meshes[cube_name]->addStartRotation(glm::vec4(1, 0, 0, std::rand() % 360));
meshes[cube_name]->addStartRotation(glm::vec4(0, 1, 0, std::rand() % 360));
meshes[cube_name]->addStartRotation(glm::vec4(0, 0, 1, std::rand() % 360));
float light_r = (40 + std::rand() % 60) / 100.f;
float light_g = (40 + std::rand() % 60) / 100.f;
float light_b = (40 + std::rand() % 60) / 100.f;
_scnctx.lights.emplace("RandLight" + i,
Light(glm::vec3(light_r, light_g, light_b), glm::vec4(pos_x, 2, pos_z, 1)));
}*/
}
void MyGlWindow::drawDeferredLight()
{
if (_scnctx.firstRedraw)
_multipassManager.deferredLightSetup(_scnctx);
_scnctx.height = m_height;
_scnctx.width = m_width;
glm::vec3 eye(viewer.getViewPoint().x, viewer.getViewPoint().y, viewer.getViewPoint().z);
glm::vec3 look(viewer.getViewCenter().x, viewer.getViewCenter().y, viewer.getViewCenter().z);
glm::vec3 up(viewer.getUpVector().x, viewer.getUpVector().y, viewer.getUpVector().z);
glm::mat4 view = lookAt(eye, look, up); //Calculate view matrix from parameters of m_viewer
glm::mat4 projection = perspective(45.0f, (float)_scnctx.width / (float)_scnctx.height, 0.1f, 1000.0f);
_scnctx.camPos = eye;
_scnctx.viewMatrix = view;
_scnctx.projectionMatrix = projection;
glClearColor(_scnctx.bg.r, _scnctx.bg.g, _scnctx.bg.b, _scnctx.bg.a);
glViewport(0, 0, _scnctx.width, _scnctx.height);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
_multipassManager.enableFrameBufferTexture(_scnctx.fboDisplayName);
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
for (auto it = meshes.begin(); it != meshes.end(); it++)
(*it).second->draw(_scnctx);
glDisable(GL_CULL_FACE);
_multipassManager.drawDeferredLightToScreen(_scnctx);
}
void MyGlWindow::drawDebugGBuffer()
{
if (_scnctx.firstRedraw)
_multipassManager.gBufferSetup(_scnctx);
_scnctx.height = m_height;
_scnctx.width = m_width;
glm::vec3 eye(viewer.getViewPoint().x, viewer.getViewPoint().y, viewer.getViewPoint().z);
glm::vec3 look(viewer.getViewCenter().x, viewer.getViewCenter().y, viewer.getViewCenter().z);
glm::vec3 up(viewer.getUpVector().x, viewer.getUpVector().y, viewer.getUpVector().z);
glm::mat4 view = lookAt(eye, look, up); //Calculate view matrix from parameters of m_viewer
glm::mat4 projection = perspective(45.0f, (float)_scnctx.width / (float)_scnctx.height, 0.1f, 1000.0f);
_scnctx.camPos = eye;
_scnctx.viewMatrix = view;
_scnctx.projectionMatrix = projection;
glClearColor(_scnctx.bg.r, _scnctx.bg.g, _scnctx.bg.b, _scnctx.bg.a);
glViewport(0, 0, _scnctx.width, _scnctx.height);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
_multipassManager.enableFrameBufferTexture(_scnctx.fboDisplayName);
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
for (auto it = meshes.begin(); it != meshes.end(); it++)
(*it).second->draw(_scnctx);
glDisable(GL_CULL_FACE);
_multipassManager.drawGBufferToScreen(_scnctx);
}
void MyGlWindow::resize(int w, int h)
{
m_width = w;
m_height = h;
viewer.setAspectRatio(w / float(h));
}